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Abstract
One of the key ingredients of Connes’s noncommutative geometry is a
generalized Dirac operator which induces a metric (Connes’s distance) on the
pure state space. We generalize such a Dirac operator devised by Dimakis et al,
whose Connes distance recovers the linear distance on an one-dimensional
lattice, to the two-dimensional case. This Dirac operator has the local
eigenvalue property and induces a Euclidean distance on this two-dimensional
lattice, which is referred to as ‘natural’. This kind of Dirac operator can be
easily generalized into any higher-dimensional lattices.

PACS numbers: 0240, 0210, 0550, 0365

Notations. σi, i = 1, 2, 3 are Pauli matrices defined in the ordinary way. If S is a finite set,
then |S| is the number of elements in S. Let i = 1, 2, 3, define γ -matrices as

γ i =
(

σi
σi

)
γ 4 =

(
i

−i

)
.

The vacant matrix elements are understood as zeros and this will be taken as a convention
throughout this paper. Introduce γ 1

± = 1
2 (γ

1 ± iγ 2), γ 2
± = 1

2 (γ
3 ± iγ 4), whose explicit matrix

representations are taken to be

γ 1
+ =




1
0

1
0


 γ 1

− =




0
1

0
1




γ 2
+ =




0
−1

1
0


 γ 2

− =




1
0

0
−1
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γ i±, i = 1, 2 satisfy Clifford algebra relations

{γ i±, γ j±} = 0 {γ i±, γ j∓} = δij i, j = 1, 2.

Convention a = 1 for the lattice constant a is adopted in this paper.

1. Introduction

The lattice Dirac operator is a long-standing problem embarrassing lattice field theorists.
The no-go theorem [1] makes the implementation of chiral fermions on a lattice almost
impossible. In recent years, some breakthroughs have been achieved, e.g. the rediscovery of
the Ginsparg–Wilson relation [2], the domain-wall devices and overlap Dirac operators [3,4].
On the other hand, the lattice can be considered as a simplest realization of noncommutative
geometry (NCG), which has drawn more and more attention of theoretical physicists due to
its applications in the standard model of particle physics [5–7], lattice field theory [8–10] and
string/M-theory [11, 12]. NCG provides a powerful candidate for a mathematical framework
for the geometrical understanding of fundamental physical laws. In Connes’s version of NCG,
a generalized Dirac operator plays a central role in introducing the metric structure onto a
noncommutative space [13–15]. Then intuitively, it becomes an interesting question whether
Connes’s NCG method could elucidate the problem of the lattice Dirac operator. In fact, some
groups have explored this question. Bimonte et al [16] first pointed out that the naive Dirac
operator is not able to induce the conventional distance on a lattice by Connes’s construction
and the Wilson–Dirac operator gives an even worse result. Starting from this observation,
Atzmon [17] computed this anomalous distance induced by the naive Dirac operator for a
one-dimensional lattice precisely, which gives a quite striking result:

d(0, 2n− 1) = 2n d(0, 2n) = 2
√
n(n + 1) ∀n ∈ N.

On a finite one-dimensional lattice, Dimakis and Müller-Hoissen [18] discovered a Dirac
operator whose Connes distance coincides with the usual linear distance. This series of work
indicates that it is a highly nontrivial question to devise a proper Dirac operator whose Connes
distance is a desired one. In fact, Iochum et al [19] gave a confirmative answer to this question
for finite spaces. Therefore, NCG provides a criterion for the rational choices of Dirac operator
on lattices. We shall refer to those that restore Euclidean geometry as ‘natural’, so naive and
Wilson operators are ‘unnatural’ in this sense.

In this paper, we show that the existence theorem of Iochum et al is valid for a two-
dimensional infinite lattice, by constructing a ‘natural’ Dirac operator on this lattice. Thus
Pythagoras’s theorem holds for Connes’s distance. The restoration of metric relies on the fact
that this operator has a so-called local eigenvalue property, such that the norm ‖[D, f ]‖ is
completely solvable. The Dirac operator devised by us can be regarded as a generalization of
Dimakis’s operator in the one-dimensional case; it can be easily generalized into any high-
dimensional lattices.

The paper is organized as follows. In section 2, we give a brief introduction to Connes’s
NCG and his distance formula. The ‘natural’ Dirac operator is defined in section 3. In section 4,
we explore the local eigenvalue property of our Dirac operator. In section 5, we prove that our
Dirac operator induces Pythagoras’s theorem on a two-dimensional lattice. In section 6, we
generalize the ‘natural’ Dirac operator into any higher-dimensional lattices.
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2. Noncommutative geometry and Connes’s distance formula

The object of a Connes NCG is a triple (A,H,D), referred to as a K-cycle. A is an involutive
algebra, represented faithfully and unitarily as a subalgebra of B(H), an algebra of bounded
operators on a Hilbert space H. D is a self-adjoint operator on H, which is called the generalized
Dirac operator; D has compact resolvent so [D, â] is bounded for all a in A. Here we use â to
denote the image of a in B(H); without introducing any misunderstanding, we will just omit
the hat on a below. A K-cycle is required to satisfy several axioms such that it recovers the
ordinary spin geometry on a differential manifold when A is taken to be the algebra of smooth
functions over this spin manifold, H is the space of L2-spinors and D is the classical Dirac
operator [15].

From a K-cycle, we can define a metric dD(, ) on the pure state space of A denoted as
S(A). This induced metric is computed by Connes’s distance formula

dD(φ, ψ) = sup{|φ(a)− ψ(a)| : a ∈ A, ‖[D, a]‖ � 1} (1)

for any φ,ψ ∈ S(A). One can check that dD(, ) satisfies all of the three axioms for a metric. If
A is commutative, pure states correspond to characters which can be interpreted as points, with
A being the algebra of functions over the space of these points (Gel’fand–Naimark theorem);
in this circumstance, equation (1) can be rewritten as

dD(p, q) = sup{|f (p)− f (q)| : f ∈ A, ‖[D, f ]‖ � 1} ∀p, q ∈ S(A). (2)

We notice the fact that

‖a‖2 = sup{(aψ, aψ) : ψ ∈ H, ‖ψ‖ = 1} = sup{λ(a) : a∗aψ = λ(a)ψ} a ∈ B(H).
The inequality constraint in equation (2) can be expressed by using eigenvalues of
[D, f ]†[D, f ]

dD(p, q) = sup{|f (p)− f (q)| : f ∈ A, λ([D, f ]†[D, f ]) � 1} ∀p, q ∈ S(A). (3)

3. ‘Natural’ Dirac operator on a two-dimensional lattice

First we give a detailed reformulation of Dimakis’s operator on a one-dimensional lattice. We
coordinatize the one-dimensional lattice by the set of integers Z. Let A0 be the algebra of
complex functions on Z, and H = l2(Z) ⊗ C

2 on which the inner product is defined in the
canonical way. The operator developed by Dimakis et al acting on H can be written in the
form

D = σ+∂
+ + σ−∂− =

(
∂+

∂−

)

where σ± = (σ1 ± iσ2)/2, ∂± : A → A are finite differences defined by ∂± = T ± − 1,
(T ±f )(x) = f (x ± 1), ∀f ∈ A,∀x ∈ Z. The restriction of ∂± to l2(Z) satisfies ∂+† = ∂−;
accordingly D is selfadjoint on H. A in the K-cycle is a subalgebra of A0 defined by
A = {f ∈ A0 : ‖[D, f ]‖ <∞}.

Local eigenvalue property of D. Note that

[D, f ] =
(

(∂+f )T +

(∂−f )T −

)
= −

(
T + · (∂−f )

T − · (∂+f )

)

and that [D, f ]† = −[D, f̄ ]. Introduce a f -Hamiltonian H(df ) := [D, f ]†[D, f ]. It is easy
to check that

H(df ) =
( |∂+f |2

|∂−f |2
)
.
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Consider the eigenvalue equation on H

H(df )ψ = λ(df )ψ ⇔ |∂+f |2(x)ψ1(x) = λψ1(x) ∀x ∈ Z

|∂−f |2(x)ψ2(x) = λψ2(x) ∀x ∈ Z

if ψ = (ψ1, ψ2)T. The constraint in equation (3) therefore implies

λ(x, 1) = |∂+f |2(x) � 1 ∀x ∈ Z (4)

λ(x, 2) = |∂−f |2(x) � 1 ∀x ∈ Z. (5)

Observe that each eigenvalue of H(df ) is just related to one link of Z, to which we refer as
the local eigenvalue. As a comparison, the eigenvalue equation for the one-dimensional naive
Dirac operator DN := (∂+ − ∂−)/2 is
1
4 (|∂+f |2(x) + |∂−f |2(x))ψ(x) + 1

4 ((∂
+f̄ )(x)(∂+f )(x + 1)ψ(x + 2)

+(∂−f̄ )(x)(∂−f )(x − 1)ψ(x − 2)) = λψ(x)
for all x in Z, with AN = A, HN = l2(Z), which evidently do not have local eigenvalues.

To induce dD(, ) on Z, let f ∈ A be subjected to (4) and (5), so that |f ((x +m)−f (x)| �
m,m = 1, 2, 3, . . . ; dD(x + m, x) hence has an upper bound m. Let f0(x) = x, then f0

saturates this upper bound. Thus, we have proved dD(m, n) = |m− n|,∀m, n ∈ Z.
Now we generalize the above construction to a two-dimensional lattice. Parametrize

the two-dimensional lattice by Z
2 and let A0 be the algebra of complex functions on Z

2,
H := l2(Z2)⊗ C

4, and

D =
2∑
i=1

∑
s=±
γ is ∂

s
i =




∂−
2 ∂+

1
∂−

1 −∂+
2

∂+
2 ∂+

1
∂−

1 −∂−
2


 (6)

where ∂±
i : A → A, i = 1, 2 are defined by ∂±

i = T ±
i − 1, (T ±

i f )(x) = f (x ± î) with
î, i = 1, 2 being the generators of Z

2. The restrictions of ∂±
i on l2(Z2) obey ∂±†

i = ∂∓
i ;

accordingly, D† = D. A is defined to be {f ∈ A0 : ‖[D, f ]‖ <∞}. By translation invariance
of D, it holds that

dD((m, n), (m′, n′)) = dD((0, 0), (m′ −m, n′ − n))
so that to consider dD((0, 0), (m, n)) is enough; moreover,

dD((0, 0), (m, n)) = dD((0, 0), (−n,m)), dD((0, 0), (m, n)) = dD((0, 0), (n,m))

due to rotation and reflection invariance, so we just need to consider m � n � 0.
To end this section, we adopt the method in [16] to prove

dD((0, 0), (i, 0)) = i i = 1, 2, . . . . (7)

Lemma 1. Let f ∈ A, ‖[D, f ]‖ � 1 and f̃ (m, n) := f (m, 0), then ‖[D, f̃ ]‖ � 1.

Proof. By the definition of D in (6), we have

[D, f̃ ]ψ = ((∂+
1 f̃ )(T

+
1 ψ4), (∂

−
1 f̃ )(T

−
1 ψ3), (∂

+
1 f̃ )(T

+
1 ψ2), (∂

−
1 f̃ )(T

−
1 ψ1))

T.

Notice the definition of f̃ ,

([D, f̃ ]ψ, [D, f̃ ]ψ) =
∑
m,n

(
|∂+

1 f̃ |2(m, n)
( 4∑
i=1

|ψ ′
i |2(m, n)

))

=
∑
m

(
|∂+

1 f |2(m, 0)
( ∑

n

4∑
i=1

|ψ ′
i |2(m, n)

))

⇒ ‖[D, f̃ ]‖ = sup{|∂+
1 f |(m, 0) : m ∈ Z} <∞. (8)
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Define Ĥ := {ψ ∈ H : ψi = 0, i = 1, 2, 3}, then

‖[D, f ]‖Ĥ � ‖[D, f ]‖ � 1 (9)

and

([D, f ]ψ, [D, f ]ψ)|Ĥ =
∑
m,n

(|∂+
1 f |2(m, n)|ψ4|2(m + 1, n) + |∂+

2 f |2(m, n)|ψ4|2(m, n + 1)).

For any ψ ∈ H, we define ψ̂ ∈ Ĥ by the facts that ψ̂4(m, n) = 0, n �= 0 and that ψ̂4(m, 0)
satisfy
|ψ̂4(m, 0)|2 = ∑

n

∑4
i=1 |ψ ′

i |2(m, n), for all m. Therefore,

([D, f̃ ]ψ, [D, f̃ ]ψ) =
∑
m

|∂+
1 f |2(m, 0)|ψ̂4(m, 0)|2 � ([D, f ]ψ̂, [D, f ]ψ̂)|Ĥ � ‖[D, f ]‖Ĥ.

Notice (9), and we have

‖[D, f̃ ]‖ � ‖[D, f ]‖Ĥ � ‖[D, f ]‖ � 1.

�
Following this lemma, we can just consider f with ∂+

2 f = 0 and reach the conclusion that
dD((0, 0), (i, 0)) � i, i = 1, 2, . . . ; f0(m, n) = m saturates this upper bound. Hence,
equation (7) holds.

4. Local eigenvalues

We have to consider the eigenvalue problem in equation (3), when discussing distance
dD((0, 0), (m, n)),m � n � 1. Fortunately, our ‘natural’ Dirac operator has the local
eigenvalue property also. A very detailed calculation is given below.

Let

D(f ) := [D, f ] =




(∂−
2 f )T

−
2 (∂+

1 f )T
+

1
(∂−

1 f )T
−

1 −(∂+
2 f )T

+
2

(∂+
2 f )T

+
2 (∂+

1 f )T
+

1
(∂−

1 f )T
−

1 −(∂−
2 f )T

−
2


 .

One can check [D, f ]† = −D(f̄ ). Define f -Hamiltonian

H(df ) := [D, f ]†[D, f ] = −D(f̄ )D(f )
=

( |∂+
1 f |2 + |∂−

2 f |2 (T −
2 (∂

+
2 f̄ ∂

+
1 f )− T +

1 (∂
−
1 f̄ ∂

−
2 f ))T

+
1 T

−
2

(T −
1 (∂

+
1 f̄ ∂

+
2 f )− T +

2 (∂
−
2 f̄ ∂

−
1 f ))T

−
1 T

+
2 |∂−

1 f |2 + |∂+
2 f |2

)

⊕
( |∂+

1 f |2 + |∂+
2 f |2 (T +

2 (∂
−
2 f̄ ∂

+
1 f )− T +

1 (∂
−
1 f̄ ∂

+
2 f ))T

+
1 T

+
2

(T −
1 (∂

+
1 f̄ ∂

−
2 f )− T −

2 (∂
+
2 f̄ ∂

−
1 f ))T

−
1 T

−
2 |∂−

1 f |2 + |∂−
2 f |2

)

with the eigenvalue equation

H(df )ψ = λ(df )ψ. (10)

Fortunately, equation (10) can be reduced to a collection of equation sets, with each equation set
being related to a fundamental plaque {(m, n), (m+1, n), (m, n−1), (m+1, n−1)} ⊂ Z

2. Label
each fundamental plaque with its upper-left corner (m, n), and the equation set corresponding
to plaque (m, n) is then read as(

ρ2
1 + ρ2

4 − λ "4"3 −"1"2

"4"3 −"1"2 ρ2
2 + ρ2

3 − λ
) (

ψ1(m, n)

ψ2(m + 1, n− 1)

)
= 0 (11)

(
ρ2

3 + ρ2
4 − λ −"4"1 +"3"2

−"4"1 +"3"2 ρ2
1 + ρ2

2 − λ
) (

ψ3(m, n− 1)
ψ4(m + 1, n)

)
= 0 (12)
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in which "1(m, n) := (∂+
1 f )(m, n), "2(m, n) := (∂+

2 f )(m + 1, n − 1), "3(m, n) :=
(∂+

1 f )(m, n − 1), "4(m, n) := (∂+
2 f )(m, n − 1) and, without misunderstanding, we have

omitted the argument (m, n). Let "i := ρieiθi , i = 1, 2, 3, 4, θ := θ1 + θ3 − θ2 − θ4, and

A := ρ2
1 + ρ2

4 B := ρ2
2 + ρ2

3 C := "4"3 −"1"2

A′ := ρ2
3 + ρ2

4 B ′ := ρ2
1 + ρ2

2 C ′ := −"4"1 +"3"2

then the secular equation for equation (11) is

(λ− A)(λ− B)− CC̄ = λ2 − (A + B)λ + AB − CC̄ = 0

in which

CC̄ = ρ2
3ρ

2
4 + ρ2

1ρ
2
2 − 2ρ1ρ2ρ3ρ4 cos θ.

The solutions are

λ± = 1
2

(
A + B ±

√
(A− B)2 + 4CC̄

)
. (13)

Similarly for equation (12),

λ′
± = 1

2

(
A′ + B ′ ±

√
(A′ − B ′)2 + 4C ′C̄ ′

)
(14)

in which

C ′C̄ ′ = ρ2
1ρ

2
4 + ρ2

2ρ
2
3 − 2ρ1ρ2ρ3ρ4 cos θ.

Therefore, ‖[D, f ]‖ � 1 ⇔ ∀(m, n),
λ+(m, n) � 1 λ′

+(m, n) � 1. (15)

Equivalently, equations (13), (14) and inequality (15) ⇔
1 + ρ2

1ρ
2
3 + ρ2

2ρ
2
4 + 2ρ1ρ2ρ3ρ4 cos θ � ρ2

1 + ρ2
2 + ρ2

3 + ρ2
4 (16)

2 � ρ2
1 + ρ2

2 + ρ2
3 + ρ2

4 . (17)

There is another constraint, the closedness condition

"1 +"4 = "2 +"3. (18)

Hence we obtain (16)–(18) as the specific expressions for ‖[D, f ]‖ � 1 on Z
2.

To end this section, we give equation (7) a second proof using (15). In fact, just notice

ρ2
1 � ρ2

1 + ρ2
4 � λ+ � 1

and we have ρi � 1, i = 1, 2, 3, 4. Consequently, dD((0, 0), (i, 0)) has the upper bound i.

5. Pythagoras’s theorem for dD(, ) on Z2

Let m � n � 1 below and we claim the following.

Theorem 1 (Pythagoras’s theorem on a two-dimensional lattice).

dD((0, 0), (p, q)) =
√
p2 + q2 ∀p � q � 1. (19)

The proof needs only inequalities (17) and (18) and we will treat q = 1 and q = 2, 3, 4, . . .
separately. An important inequality in mathematics analysis is needed:

n∑
i=1

ai

n∑
i=1

bi � n
n∑
i=1

aibi (20)
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where the equality holds if a1 = a2 = · · · = an or b1 = b2 = · · · = bn.
The general philosophy of the proof can be illustrated as follows. First we define the

concept of a canonical path, which means a subset of Z
2 generated by one point denoted as start

and the operations T +
1 , T

+
2 . Then it must have an end if T +

1 , T
+

2 just act finite times. Second we
pick out a rectangle subset L(p, q) of Z

2, which is defined as {(m, n) : m = 0, 1, . . . , p, n =
0, 1, . . . , q}, and define the link set of L(p, q), B(p, q) := {(m, n, s) : s = 1, 2; s = 1 : m =
0, 1, . . . , p − 1, n = 0, 1, . . . , q; s = 2 : m = 0, 1, . . . , p, n = 0, 1, . . . , q − 1}. For any
f |L(p,q) defined on L(p, q), there is a function "f defined on B(p, q) correspondingly, with
"f (m, n, 1) = (∂+

1 f )(m, n),"f (m, n, 2) = (∂+
2 f )(m, n). There is another set induced by

L(p, q), the set of all canonical paths starting at (0, 0) and ending at (p, q), written as'(p, q).
Any element γ ∈ '(p, q) can be considered as p + q sequential links, namely a subset of
B(p, q). As for the first step of the proof, we want to show that for any γ ∈ '(p, q),∣∣∣∣

∑
l∈γ
"f (l)

∣∣∣∣ �
√
p2 + q2

if f is subject to (17), (18). Adopting reduction of absurdity, we suppose there is a γ0

such that | ∑l∈γ0
"f (l)| >

√
p2 + q2. Then by virtue of the closedness condition (18),

| ∑l∈γ "f (l)| >
√
p2 + q2, ∀γ ∈ '(p, q), which implies

∑
l∈γ

|"f (l)|2 > p
2 + q2

p + q
.

Therefore ∑
γ∈'(p,q)

( ∑
l∈γ
"f (l)2

)
> R(p, q)

p2 + q2

p + q
(21)

where we introduce R(p, q) = ∑
γ∈'(p,q) 1 = |'(p, q)|, the number of all canonical paths

starting from (0, 0) and ending at (p, q), which is equal to the binomial coefficient
(
p+q
p

)
. We

change the summation for paths in '(p, q) in (21) to the summation in B(p, q),

∑
l∈B(p,q)

(L(l)"f (l)2) > R(p, q)
p2 + q2

p + q
(22)

where L(l) is the weight function on B(p, q) introduced by changing the index of the
summations. The geometric interpretation of L(l) is the number of canonical paths in '(p, q)
passing through link l, which is expressed as

L(m, n, 1) = R(m, n)R(p −m− 1, q − n)
L(m, n, 2) = R(m, n)R(p −m, q − n− 1).

We induce the third set from L(p, q), the set Q(p, q) of all fundamental plaques as subsets
in L(p, q), which can be expressed as {(m, n) : m = 0, 1, . . . , p − 1, n = 0, 1, . . . , q − 1}.
Rewrite (17) as

4∑
i=1

|"f |2(p, i) � 2 (23)

which can be considered as a constraint on the four links in one fundamental plaque p. Now
sum (23) for all plaques inQ(p, q)

∑
p∈Q(p,q)

4∑
i=1

|"f |2(p, i) � 2|Q(p, q)| = 2pq.
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Again we change the summation for plaques to the summation for links and introduce another
weight function S(l),∑

l∈B(p,q)
S(l)|"f |2(l) � 2|Q(p, q)| (24)

where S(m, 0, 1) = S(m, q, 1) = S(0, n, 2) = S(p, n, 2) = 1, S(other) = 2, namely to links
l shared by two plaques S(l) = 2, otherwise S(l) = 1. Using (20) again and noticingL(l) �= 0,
we obtain

2|Q(p, q)| �
∑

l∈B(p,q)
S(l)|"f |2(l)

�
∑

l∈B(p,q)

(
S(l)

L(l)

)
(L(l)|"f |2(l))

� 1

|B(p, q)|
∑

l∈B(p,q)

(
S(l)

L(l)

) ∑
l∈B(p,q)

(L(l)|"f |2(l))

⇔ 2|Q(p, q)||B(p, q)|∑
l∈B(p,q)

S(l)

L(l)

�
∑

l∈B(p,q)
(L(l)|"f |2(l)) (25)

where |B(p, q)| = 2pq + p + q. The contradiction lies between inequalities (22) and (25), if
only

2|Q(p, q)||B(p, q)|∑
l∈B(p,q)

S(l)

L(l)

� R(p, q)p
2 + q2

p + q
. (26)

As we declared, the description above is just a general philosophy of proof; since the operation
on L(p, q) is complicated, we will just prove the case q = 1 for equation (26) and leave cases
q � 2 to a revised L(p, q) construction.

Lemma 2. For q = 1, (26) reads

2p(1 + 3p) � (1 + p2)
∑

l∈B(p,1)

S(l)

L(l)
. (27)

Proof. Using the definitions of L(l) and S(l), we have
∑
l∈B(p,1)

S(l)

L(l)
= 2(p +

∑p

n=1
1
n
).

Then (27) reduces to show

3p2 � p3 + (1 + p)

( p∑
n=1

1

n

)
. (28)

However, (28) is easily checked by p = 1, p = 2 and p = 3, 4, . . . respectively. �

Accordingly, we reach the conclusion that dD((0, 0), (p, 1)), p = 1, 2, 3, . . ., has an upper
bound

√
1 + p2.

We define L̃(p, q) to be a ‘folding ruler’, {(m, 0), (m, 1), (p − 1, n), (p, n) : m =
0, 1, . . . , p, n = 2, . . . , q}, for p � q � 2, and apply our general philosophy of proof to
L̃(p, q). Namely, we induce B̃(p, q), P̃ (p, q), Q̃(p, q) from L̃(p, q), and introduce weight
functions L̃(l), S̃(l) on B̃(p, q).
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Lemma 3.

2|Q̃(p, q)||B̃(p, q)|∑
l∈B̃(p,q)

S̃(l)

L̃(l)

� R̃(p, q)p
2 + q2

p + q
. (29)

Proof. |Q̃(p, q)| = p + q − 1, |B̃(p, q)| = 3p + 3q − 2, R̃(p, q) = 1 + pq;
S̃(m, 0, 2) = S̃(p − 1, n, 1) = 2,m = 1, 2, . . . , p − 1, n = 1, . . . , q − 1, S̃(other) = 1;
L̃(m, 0, 1) = 1 + q(p − m − 1), L̃(m, 0, 2) = q,m = 0, 1, . . . , p − 1; L̃(p, 0, 2) = 1;
L̃(m, 1, 1) = q(m + 1),m = 0, 1, . . . , p − 2; L̃(p − 1, n, 2) = p(q − n), L̃(p, n, 2) =
1 + pn, n = 1, . . . , q − 1; L̃(p − 1, n, 1) = p, n = 1, . . . , q. Thus,

∑
l∈B̃(p,q)

S̃(l)

L̃(l)
= 2 + 2

(
p

q
+
q

p

)
+ δ � 6

in which

δ = 1

q

( p−1∑
n=1

1

n
− 1

)
+

1

p

( q−1∑
n=1

1

n
− 1

)
+
p−1∑
n=1

1

1 + nq
+
q−1∑
n=1

1

1 + np
� 0.

We claim that lemma 3 is implied by

(p + q)|Q̃(p, q)||B̃(p, q)| � 3R̃(p, q)(p2 + q2)

⇔ (p + q)(p + q − 1)(3(p + q)− 2) � 3(1 + pq)(p2 + q2) ∀p � q � 2.

(30)

We prove (30) by induction. First, fixing one q = 2, 3, . . . , we show that (30) holds when
p = q. In this case, (30) is reduced to

12q3 + 2q � 3q4 + 13q2 ∀q � 2.

The above inequality can be checked to be valid when q = 2, q = 2 and q � 3. Second, with
this fixed q, we suppose that the statement is valid in the case p = p0, and show that it will
also hold for p = p0 + 1. Without misunderstanding, we drop the subscript ‘0’. It is sufficient
to check

9pq + 9q2 � 9(q − 1)p2 + 3q3 + 7p + 4q + 3.

Since 9pq � 9(q − 1)p2,∀p � q � 2, we just check

9q2 � 3q3 + 7p + 4q + 3

which is valid when q = 2 and q � 3. �
Accordingly, dD((0, 0), (p, q)) has an upper bound

√
p2 + q2 for all p � q � 2. Choose

f(p,q)(m, n) = pm+qn√
p2+q2

, which can be checked easily to saturate this upper bound. Therefore,

theorem 1 follows.

6. Higher-dimension cases

Our ‘natural’ Dirac operator is able to be generalized easily into any dimension greater than
two. Let 'i, i = 1, 2, . . . , 2d be the generators of Cl(E2d) which satisfy Clifford relations

{'i, 'j } = 2δij i, j = 1, 2, . . . , 2d. (31)

Define 'k± = ('2k−1 ± i'2k)/2, k = 1, 2, . . . , d, and equation (31) changes form into

{'m±, 'n±} = 0 {'m±, 'n∓} = δmn m, n = 1, 2, . . . , d.
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Now let

D(d) =
d∑
k=1

∑
s=±
'ks ∂

s
k

and one can check the square-root property

(D(d))2 =
d∑
k=1

∂+
k ∂

−
k .

Let H = l2(Zd)⊗ C
2d , then D(d) is selfadjoint. The work showing that D(d) is ‘natural’ for a

d-dimensional lattice is in progress.
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(Carmimati L, Iochum B and Schücker T 1997 Preprint hep-th/9706105)
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